U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
U31: {1}
0: empty set
U41: {1}
x: {1, 2}
and: {1}
isNat: empty set
↳ CSR
↳ CSDependencyPairsProof
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
U31: {1}
0: empty set
U41: {1}
x: {1, 2}
and: {1}
isNat: empty set
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
U211(tt, M, N) → PLUS(N, M)
U411(tt, M, N) → PLUS(x(N, M), N)
U411(tt, M, N) → X(N, M)
ISNAT(plus(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(plus(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNAT(x(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(x(V1, V2)) → ISNAT(V1)
PLUS(N, 0) → U111(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), isNat(N)), M, N)
PLUS(N, s(M)) → AND(isNat(M), isNat(N))
PLUS(N, s(M)) → ISNAT(M)
X(N, 0) → U311(isNat(N))
X(N, 0) → ISNAT(N)
X(N, s(M)) → U411(and(isNat(M), isNat(N)), M, N)
X(N, s(M)) → AND(isNat(M), isNat(N))
X(N, s(M)) → ISNAT(M)
U111(tt, N) → N
U211(tt, M, N) → N
U211(tt, M, N) → M
U411(tt, M, N) → N
U411(tt, M, N) → M
AND(tt, X) → X
isNat(V2)
U111(tt, N) → U(N)
U211(tt, M, N) → U(N)
U211(tt, M, N) → U(M)
U411(tt, M, N) → U(N)
U411(tt, M, N) → U(M)
AND(tt, X) → U(X)
U(isNat(V2)) → ISNAT(V2)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDP
AND(tt, X) → U(X)
U(isNat(V2)) → ISNAT(V2)
ISNAT(plus(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(plus(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNAT(x(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(x(V1, V2)) → ISNAT(V1)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
[x2, U413] > [plus2, U213] > [isNat1, and2] > tt > [AND2, U1] > s1
[x2, U413] > [plus2, U213] > [isNat1, and2] > tt > 0 > s1
[x2, U413] > [plus2, U213] > [isNat1, and2] > ISNAT1 > [AND2, U1] > s1
[x2, U413] > [plus2, U213] > U112 > s1
[x2, U413] > U311 > 0 > s1
plus2: [2,1]
U413: [2,3,1]
x2: [2,1]
U112: multiset
and2: [2,1]
0: multiset
ISNAT1: multiset
tt: multiset
U311: multiset
U1: multiset
AND2: multiset
s1: multiset
isNat1: multiset
U213: [2,3,1]
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
AND(tt, X) → U(X)
U(isNat(V2)) → ISNAT(V2)
ISNAT(plus(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(plus(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNAT(x(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(x(V1, V2)) → ISNAT(V1)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ QCSDP
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
PLUS(N, s(M)) → U211(and(isNat(M), isNat(N)), M, N)
U211(tt, M, N) → PLUS(N, M)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(N, s(M)) → U211(and(isNat(M), isNat(N)), M, N)
Used ordering: Combined order from the following AFS and order.
U211(tt, M, N) → PLUS(N, M)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
U211(tt, M, N) → PLUS(N, M)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
U411(tt, M, N) → X(N, M)
X(N, s(M)) → U411(and(isNat(M), isNat(N)), M, N)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
X(N, s(M)) → U411(and(isNat(M), isNat(N)), M, N)
Used ordering: Combined order from the following AFS and order.
U411(tt, M, N) → X(N, M)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDependencyGraphProof
U411(tt, M, N) → X(N, M)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
U31(tt) → 0
U41(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
isNat(x(V1, V2)) → and(isNat(V1), isNat(V2))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), isNat(N)), M, N)